Copied to
clipboard

G = C62.C9order 324 = 22·34

2nd non-split extension by C62 of C9 acting via C9/C3=C3

metabelian, soluble, monomial

Aliases: C62.2C9, C9.A42C3, C9.5(C3×A4), (C3×C9).3A4, C9.(C3.A4), (C2×C18).3C9, (C6×C18).2C3, C222(C27⋊C3), C32.(C3.A4), (C2×C18).5C32, (C2×C6).6(C3×C9), C3.3(C3×C3.A4), SmallGroup(324,45)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C62.C9
C1C22C2×C6C2×C18C9.A4 — C62.C9
C22C2×C6 — C62.C9
C1C9C3×C9

Generators and relations for C62.C9
 G = < a,b,c | a6=b6=1, c9=b2, ab=ba, cac-1=ab-1, cbc-1=a3b4 >

3C2
3C3
3C6
3C6
3C6
3C6
3C2×C6
3C3×C6
3C18
3C18
3C18
4C27
4C27
4C27
3C3×C18
4C27⋊C3

Smallest permutation representation of C62.C9
On 54 points
Generators in S54
(2 42 20 33 11 51)(3 52 12 34 21 43)(5 45 23 36 14 54)(6 28 15 37 24 46)(8 48 26 39 17 30)(9 31 18 40 27 49)
(1 50 10 32 19 41)(2 20 11)(3 52 12 34 21 43)(4 53 13 35 22 44)(5 23 14)(6 28 15 37 24 46)(7 29 16 38 25 47)(8 26 17)(9 31 18 40 27 49)(30 48 39)(33 51 42)(36 54 45)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (2,42,20,33,11,51)(3,52,12,34,21,43)(5,45,23,36,14,54)(6,28,15,37,24,46)(8,48,26,39,17,30)(9,31,18,40,27,49), (1,50,10,32,19,41)(2,20,11)(3,52,12,34,21,43)(4,53,13,35,22,44)(5,23,14)(6,28,15,37,24,46)(7,29,16,38,25,47)(8,26,17)(9,31,18,40,27,49)(30,48,39)(33,51,42)(36,54,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (2,42,20,33,11,51)(3,52,12,34,21,43)(5,45,23,36,14,54)(6,28,15,37,24,46)(8,48,26,39,17,30)(9,31,18,40,27,49), (1,50,10,32,19,41)(2,20,11)(3,52,12,34,21,43)(4,53,13,35,22,44)(5,23,14)(6,28,15,37,24,46)(7,29,16,38,25,47)(8,26,17)(9,31,18,40,27,49)(30,48,39)(33,51,42)(36,54,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(2,42,20,33,11,51),(3,52,12,34,21,43),(5,45,23,36,14,54),(6,28,15,37,24,46),(8,48,26,39,17,30),(9,31,18,40,27,49)], [(1,50,10,32,19,41),(2,20,11),(3,52,12,34,21,43),(4,53,13,35,22,44),(5,23,14),(6,28,15,37,24,46),(7,29,16,38,25,47),(8,26,17),(9,31,18,40,27,49),(30,48,39),(33,51,42),(36,54,45)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

60 conjugacy classes

class 1  2 3A3B3C3D6A···6H9A···9F9G9H9I9J18A···18R27A···27R
order1233336···69···9999918···1827···27
size1311333···31···133333···312···12

60 irreducible representations

dim11111333333
type++
imageC1C3C3C9C9A4C3.A4C3×A4C3.A4C27⋊C3C62.C9
kernelC62.C9C9.A4C6×C18C2×C18C62C3×C9C9C9C32C22C1
# reps1621261422618

Matrix representation of C62.C9 in GL3(𝔽109) generated by

100
101640
90046
,
6400
0640
71045
,
661070
0431
5340
G:=sub<GL(3,GF(109))| [1,101,90,0,64,0,0,0,46],[64,0,71,0,64,0,0,0,45],[66,0,53,107,43,4,0,1,0] >;

C62.C9 in GAP, Magma, Sage, TeX

C_6^2.C_9
% in TeX

G:=Group("C6^2.C9");
// GroupNames label

G:=SmallGroup(324,45);
// by ID

G=gap.SmallGroup(324,45);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,54,361,68,4864,8753]);
// Polycyclic

G:=Group<a,b,c|a^6=b^6=1,c^9=b^2,a*b=b*a,c*a*c^-1=a*b^-1,c*b*c^-1=a^3*b^4>;
// generators/relations

Export

Subgroup lattice of C62.C9 in TeX

׿
×
𝔽